Newton's laws of motion

Everybody continues to be in its state of rest or of uniform motion in straight line unless compelled by some external force to act.

FIRST LAW OF MOTION

Ball at Rest

Ball in Motion

SECOND LAW OF MOTION

The rate of change of momentum of a body is directly proportional to the applied force and takes place in the direction in which the force acts.

More Mass More Force

THIRD LAW OF MOTION

To every action, there is always an equal and opposite reaction.

$$F_{12} = -F_{21}$$

Force on Bullet

Law of Conservation of Momentum

The total momentum of an isolated system of interacting particles is conserved.

$$p'_A + p'_B = p_A + p_B$$

Lami's Theorem

If three forces acting on a particle are in equilibrium, then

$$\frac{A}{\sin\beta} = \frac{B}{\sin\gamma} = \frac{C}{\sin\alpha}$$

Friction

A force acting on the point of contact of the objects, which opposes the relative motion is called friction.

 μ_l = coefficient of limiting friction

R = normal reaction $\mu_k = \text{coefficient of kinetic}$ friction

Limiting Friction,

$$f_{s (max)} = \mu_l R$$

Angle of friction,

$$\mu_l = \tan \theta$$

Angle of Response or Angle of Sliding,

$$\mu_l = \tan \alpha$$

Kinetic Friction,

$$f_k = \mu_k R$$

Motion on a Rough Inclined Plain

$$R = mg \cos \theta$$
$$F = mg \sin \theta - f$$
$$a = g(\sin \theta - \mu \cos \theta)$$

Motion of Bodies in Contact

Two bodies in contact

 F_1 = Contact force on m_1

$$F_1 = m_1 a = \frac{m_1 F}{(m_1 + m_2)}$$

Acceleration on bodies,

$$a=\frac{F}{(m_1+m_2)}$$

 F_2 = Contact force on m_2

$$F_2 = m_2 a = \frac{m_2 F}{(m_1 + m_2)}$$

Three bodies in contact

Acceleration on bodies,

$$a = \frac{r}{m_1 + m_2 + m_3}$$

$$F_1 = \frac{(m_2 + m_3)F}{(m_1 + m_2 + m_3)}$$

Contact force between m_2 and m_3

$$F_2 = \frac{m_3 F}{(m_1 + m_2 + m_3)}$$

Motion of Two Bodies, One Resting on the Other

$$a = \frac{F}{(M+m)}$$

$$f = \mu N = \mu mg$$

Two bodies on rough surface

Net acceleration,

$$a = \frac{F}{(M+m)} \mu_1 g$$

Net accelerating force, $a = \frac{F}{(M+m)} \mu_1 g$ $F - f_a = F - \mu_1 (M+m) g$

Motion of Bodies Connected by Strings

$$T_1 F a = \frac{F}{(m_1 + m_2 + m_3)}$$

Tension in string

$$T_2 = (m_2 + m_3)a = \frac{(m_2 + m_3)F}{(m_1 + m_2 + m_3)}$$

$$T_3 = m_3 a = \frac{m_3 F}{(m_1 + m_2 + m_3)}$$

Pulley Mass System

When unequal masses m_1 and m_2 suspended from a pulley $(m_1 > m_2)$ When a body of mass m₂ is placed on a frictionless horizontal surface

$$T = \frac{2m_1 m_2}{(m_1 + m_2)} g \qquad m_2 g$$

$$a = \frac{m_1 g}{(m_1 + m_2)}; T = \frac{m_1 m_2 g}{(m_1 + m_2)}$$

When a body of mass m2 is placed on a rough horizontal surface

$$a = \frac{(m_1 - \mu m_2)g}{(m_1 + m_2)}$$

$$T = \frac{m_1 m_2 (1 + \mu) g}{(m_1 + m_2)}$$

When two masses m₁ and m₂ (m₁ > m₂) are connected to mass M

$$a = \frac{(m_1 - m_2)g}{(m_1 + m_2 + M)}$$

$$T_1 = \left(\frac{2m_2 + M}{m_1 + m_2 + M}\right) m_1 g$$
; $T_2 = \left(\frac{2m_1 + M}{m_1 + m_2 + M}\right) m_2 g$

Motion on smooth inclined surface

$$a = \left(\frac{m_1 - m_2 \sin \theta}{m_1 + m_2}\right) g$$

$$T = \frac{m_1 m_2 (1 + \sin \theta) g}{(m_1 + m_2)}$$

Motion of two bodies placed on two inclined planes having different angle of inclination

$$a = \frac{(m_1 \sin \theta - m_2 \sin \theta)g}{m_1 + m_2}$$

$$T = \frac{m_1 m_2}{m_1 + m_2} (\sin \theta_1 + \sin \theta_2) g$$

